Bell Hydromatics Piston Pumps ## Features: - Combining special internal designs and strict engineering disciplines has reduced noise level to new lows in whole pressure zones. - Depending on variety of application needs multiple optional unique control methods are available, it does not only reduce a number of unnecessary hoses, pipes and control valves but also increase efficiency and save horsepower, and cost. - Less capacity reservoirs can be selected and applied because of performances of low pressure loss and less head generation. - Wide application ranges:it is very suitable for machine tools, plastic injection molding machines, forging machines and other industrial machines etc.. - Mounting flanges are made to SAE A or B 2-bolt (V15.18, 38 types) and SAE-C 2 & 4-bolt (HV-50.HV-70 types). ## **Ordering Code** | HV | 38 | Α | 4 | R | S | F | -20 | |--------------------|--|--|---|--------------------------|------------------|------------------|---| | Series
No | Displacement
cc/rev
(in ³ /rev) | Control Type | Pressure
Compensating
Range
bar(PSI) | Rotation | Port
Position | Mounting | Design No.
Shaft
Option
Flange
Option | | | | Standard | | | | | | | HV | 15(0.9)
18(1.1) | A:Pressure
Compensating(manual) | | | | | | | Variable | | Option | | | | | | | Volume
Piston | 23(1.4)
38(2.3) | B:Pressure
Compensating Type
Pilot | | | | | | | Pump | 50(3.1) | (Remote Control) | | | | | 20: PT(Rc)
Flange kits, | | | 70(4.3) | C:TwoPressure-Two
FLow | | | | | Straight Key
2080:PF(G) | | | | Control Type | 1:8~70(115-
1000) | R:Clockwise(CW) | | | Flange
Kits,Straight | | | | D:Solenoid Cut-Off
Control Type | | | | | Key 2090:NPT | | | | Control Type | | | | | Flange | | | | E:Two Pressure Cut-
Off Control Type | 2:15~140(210-
2000) | L:Counter Clockwise(CCW) | S:Side
port | F:FlangeMounting | Kits,Straight
Key | | | | F:Two Pressure,Two
Flow Control | 3:20~210(280-
3000) | Viewed from | R:Axial port | L:Foot Mounting | 30:PT(Rc)
Flange
Kits,SAE B | | DV | 15(0.9) | Type by Solenoid Valve | 4:20~250(280- | Shaft End | | | (13 Tooth) | | Variable
Volume | 18(1.1) | G:Two Pressure,Two
Flow Control | 3500) | | | | 3080:PF(G)
Flange | | Piston | 23(1.4) | Type by Solenoid Valve | | | | | Kits,SAE
B(13 Tooth) | | Pump | 38(2.3) | H:Power Maching
Control | | | | | 3090:NPT
Flange | | | | HL:Load Sensing
Compensator | | | | | Kits,SAE B
(13 Tooth) | | | | HJ:Electro-Hydraulic
Proportional | | | | | | | | | Load Sensing Type | | | | | | | | | DV Series available in A,B,C,D,H and | | | | | | | | | HL type only | | | | | | ### Standard Type | Option | | | | | | | |--------|----------------------|------------------|---|-----------------------|---|--| | Symbol | Size | External
View | Performance
Curve | Hydraulic Circuit | Description | | | | 15 | | | Pilot Port Outlet | | | | | 18 | | | | Pressure
Compensating Type | | | | 38 | | A District | | The pressure can be controlled | | | В | 50 | | 1 | CX4 | according to the pilot pressure | | | | 70 | | Prosuc | MATA | The flow can be | | | | 100 | | | O Drain Port | controlled manually. | | | | 15 | | | Outlet | Two Pressure-Two
Flow Control Type | | | | 18
23 | | .1 | med | By means of the | | | С | 38 | | 8 P1 | MED MED | sequence valve, two
stage flow rate can | | | | 50 | TEP- | P2 | | be obtained and
each flow rate has
the different | | | | 70 | | - Itsut | N N Drain Port | pressure eventually
enabling energy | | | | 100 | | | Suotion | zone.
Solenoid cut off | | | | 18 | | 2 20% GOV | . = l | Control Type. | | | | 23 | | | | An unloading
Solenoid valve is | | | D | 38
50 | | | | used to minimize
the lost energy when
the pump output is | | | | 70 | 677 C 8880 | - Pessur | | not required. | | | | 100 | | | Drain Port
Suction | Heat generated is
very small. | | | | 15 | | | Outlet | | | | | 18 | Marian Contract | SOL SOL | | Two Pressure cut
off Control TypeBy
means of ON OFF
control of solenoid
valves, two different | | | E | 38 | | | | | | | | 50
70 | MILLIA | P1 P2 | | pressure
compensating types | | | | 100 | | | Drain Port
Suction | can be obtained. | | | | 15 | | | | Two Pressure-Two
Flow Control Type | | | | 18
23 | | | | by Solenoid Valve | | | | 38 | | | | Actuators can be
shifted slowly(high | | | | 50 | | | P Outlet | pressure low flow)
and quickly(low
pressure high flow) | | | | 70 | - | g qt | | by switching
directions of | | | F | | | 504
504
504
62 81 505
82 81 505
83 | | solenoid control valve. | | | | | 7 | e2 py North pg | | This type of applied to actuator requiring | | | | 100 | | | Drain Port
Suction | operations to shift
speed from high to | | | | | | | | low or low high. | | | | | | | | pressure "P1,P2"
and flow "q1,q2" can
be adjusted | | | | | | | | optionally. | | | | 15
18 | | | [<u>-</u> - | Multi stage & Single
stage Pressure
Control Type(With | | | | 23 | | 100 | | Cylinder) | | | G1 | 38
50 | - | : | | Actuators can be
shifted slowly (high
pressure low flow) | | | | 70 | na No. | P | | and Quickly (low
pressure high flow) | | | | 100 | | | Suction | by switching directions of | | | | 100 | | | Drain Port | solenoid control valve. | | | | 15 | | | ra Sena Sena | POWER MACHING | | | | 18 | | ž | - SZ-M-1 | CONTROL An ideal energy | | | н | 38 | la ette | 1 | | conservation
system,"Power | | | | 50 | - C | — Pressure | L | matching system"
can be directional | | | | 100 | | | Drain Port
Suction | control valves with
this control system. | | | | 15 | | | | Load Sensing
Compensator.The | | | | 18
23 | | P Processing | | HL compensator is
used for load | | | | 38 | | | | sensing circuits and is a true load | | | | 50 | | | | sensor. This is the B | | | | 70 | | | | compensator with a
pin.the pin prevents | | | | | 5600.00 | | | pilot flow from
entering the circuit
which will eliminate | | | HL | | | | | creeping of hte load. | | | | | | | | I ne HL
compensator will let | | | | 100 | | 1.5-3/-5-2003/860 | Drain Port | the pump deliver a
constant flow rate to
the circuit by | | | | 100 | | | Suction | providing an adjustable P across | | | | | | | | the customers office
or valve. | | | | | | | | The Pump will operate at 17.2-27.5 | | | | | | | | bar(250-400 PSI)
above Load | | | | 15 | | | | Presure. | | | | 15
18
23
38 | | | 1 1 2 12 1 | Electro-Hydraulic
Proportional Load
Sensing Type. | | | | | | | - 107 N | This is an energy | | | HJ | | | | | saving type control which regulates the | | | | 50
70 | | (8 - Host Current - L) | Drain Port | pump flow and load
pressure to be at
absolute minimum | | | | 100 | | | Suction | necessary level to
operate hte actuator. | | | | | | | 1 | | | #### **Operating Data** #### Fluid Recommendations In case hydraulic pressure is under 70 bar, use hydraulic oil which is corresponding to ISO VG32-60 in viscosity grade or wear resisting hydraulic oil. In case hydraulic pressure is over 70 bar, use wear resisting hydraulic oil which is corresponding to ISO VG32-68 in viscosity grade. In case hydraulic pressure is under 70 bar, use hydraulic oil which is corresponding to ISO VG32-60 in viscosity grade or wear resisting hydraulic oil.In case hydraulic pressure is over 70 bar, use wear resisting hydraulic oil which is corresponding to ISO VG32-68 in viscosity grade. #### Viscosity and Operating Temperature Oil viscosity ranging from 15 cStto 400 cSt and oil temperature from 0°C to 60 °C are recommended. #### Istallation and Mounting Eccentricity between the driving shaft and pump shaft should be under 0.05 TIR, and operate the pump in such a way that the pump shaft is not subjected to orthogonal force. If centering between the driving shaft and pump shaft is incorrect, the bearing and oil seal may be damaged, noise and vibration may occur, which cause trouble with the pump. Avoid driving the pump in the lateral direction by belt, chain or gears. (This may cause noise and damage the bearing.) The pump can be operated with its shaft mounted perpendicularly. #### **Piping Work** Use parallel thread pipe joints for the suction inlet and discharge outlet. Do not use taper thread piping joints or air may intrude or abnormal noise be produced. In case where steel pipes are used, lay the piping with care so as not to put force on the pump. Eccentricity of a pump being forced by piping may cause seriors trouble with noise. #### **Drain Piping** Lay the drain piping independently not joined with other return lines, in such a way that the pump internal pressure is under 0.35 bar. Lay the oil return piping under the oil level of the tank and as far as possible from suction piping, (refer under table) #### Start-Up Before starting the pump, fill the pump case with hydraulic oil using the drain charging port on the pump body. Do not operate the pump at full speed right away. Instead, turn the motor input switch on and off several times so as to extract air from the piping, then operate it continuously. At the start, be sure to reduce the pressure or operate it unloaded. #### Shaft Rotation Shaft rotation is clockwise viewed from the end of pump shaft. In case revolution is required, indicate it by Model No. #### Suction Pressure Adjust suction pressure to within - 125mmHg. High suction pressure may cause cavitation, damage of parts, noise and vib- ratior which greatly shorten the life of pumps. #### Filration Deterioration of the hydraulic oil may cause trouble with the pump and shorten its life. Carefully control the quality of the oil so as to maintain the deterioration of the oil within Grade NAS 9. Be sure to attach a suction filter of 150 mesh to the suction side and a line filter of 25 to the return line of the discharge side. #### Max. Working Pressure Operation period at maximum working pressure should be under 10% of one cycle and the retaining period should be under 6 seconds. ## Assembly #### Ordering Code -HV Piston Pumps Cartridge Kits | HV | 38 | R | KW | | |---------------|--------------|-----------|--------------|---| | Series
No. | Displacement | Rotation | Kits
Code | Detail Part No. and Q'ty | | | 15 cc/rev | | KT | #(5)x1 | | Variable | 16 cc/rev | R: | KU | #(6,7)x9,(8)x1 | | Volume | 23cc/rev | Clockwise | KV | #(4) (0) (14) (24) (29);(1#(24);(2 #(49);(2 #(6 7);(0 | | | 38cc/rev | L: | l N | #(4),(9),(14),(21),(28)x1#(21)x2,#(18)x3,#(6,7)x9 | | Piston | 50cc/rev | Counter- | IZVAZ | #(4) (5) (0) (0) (44) (04) (00) 4#(04) 0 #(40) 0 #(0.7) 0 | | Pump | 70cc/rev | Clockwise | KW | #(4),(5),(8),(9),(14),(21),(28)x1#(21)x2,#(18)x3,#(6,7)x9 | | | 100cc/rev | | #(6,7)\$ | Size 8 x 7pcs,Size 16~36 x 9pcs,Size 46~100x11pcs | #### Parts List: | lo. | Part Name | No. | Part Name | |-----|---------------------------------|-----|---------------------------| | | Pump Housing | 26 | Snap Ring | | | Rear Cover | 27 | Snap Ring | | 1 | Shaft | 28 | Snap Ring | | 1 | Cylinder barrel(Cylinder block) | 29 | Oil Ring | | | Valve pipe | 30 | Oil Ring | | | Piston | 31 | Oil Ring | | 7 | Shoe | 32 | Pin | | | Shoe holder | 33 | Expander Plug | | 9 | Barrel holder | 34 | Machine Screw | | 10 | Swash plate | 35 | Hexagon Socket Head Screw | | 11 | Thrust Bush | 36 | Flow Adjusting Bolt | | 12 | Seal holder | 37 | Spring Holder | | 13 | Gasket | 38 | Hexagon Socket Head Screw | | 14 | Spring C | 39 | Body | | 5 | Sping S | 40 | Spool | | 6 | Control Piston | 41 | Holder | | 7 | Guide | 42 | Plunger | | 18 | Needie | 43 | Spring | | 9 | Key | 44 | Retainer | | 20 | Nut | 45 | Pressure Adjusting Bolt | | 21 | Retainer | 46 | Nut | | 22 | Plug | 47 | O-Ring | | :3 | Ball Bearing | 48 | O-Ring | | 24 | Needle bearing | 49 | O-Ring | | :5 | Oil seal | 50 | Plug | #### Performance Data EFFICIENCY CURVES NPUT POWER AT FULL CUT-OFF ► Press DRAIN CURVE #### Dimensions: #### HV-23 C-Type #### HV-38 D,E-Type #### HV-50 G1-Type #### HV-70 G1-Type #### Dimensions: